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The authors present a mid-IR depressed cladding waveguide laser in Fe:ZnSe. The laser produced a

maximum output power of 76 mW at 4122 nm and laser thresholds as low as 154 mW were demon-

strated. This represents a 44% reduction in threshold power compared with the bulk laser system

demonstrated in this paper. The waveguide laser was found to have a narrow spectral linewidth of

6 nm FHWM compared to the 50 nm typical of bulk Fe:ZnSe lasers. VC 2015 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4927384]

Demand for widely tunable high-power mid-IR (2–5 lm)

laser sources has driven the development of transition metal

doped II–VI semiconductors laser sources since their first

introduction into the photonics community by DeLoach et al.1

The sources of this demand are many mid-IR sensing applica-

tions such as remote sensing, laser radar, and chemical detec-

tion. Ti-sapphire based systems can produce laser light over a

very wide range in the mid-IR region when coupled with non-

linear crystals (OPOs), which add increased size, complexity,

and cost to the system. Quantum Cascade Lasers (QCLs) offer

direct light generation in the mid-IR but are limited to narrow

tuning in the 2–5 lm ranges.2,3 For direct generation of laser

light in the 2–3 lm region, the most developed gain medium

is chromium-doped zinc selenide (Cr:ZnSe). Cr:ZnSe has

demonstrated 30 W of output power and a continuous tunable

range of 1973 nm–3249 nm.4,5 Iron-doped ZnSe (Fe:ZnSe) is

another promising broad-band gain medium with lumines-

cence from 3.5 to 5.2lm at room temperature.6 The absorp-

tion and emission bands of Fe:ZnSe are shifted to longer

wavelengths than that of Cr:ZnSe because the d6 electron con-

figuration of the Fe2þ ion experiences a 4/9 reduction in the

magnitude of the crystal field splitting in ZnSe when com-

pared to the d4 configuration of the Cr2þ ion. The first

Fe:ZnSe laser was demonstrated by Adams et al.7 Since then,

CW output powers of >1.5 W, 35 W of average output power

in gain switched operation, and tunable operation from 3770

to 5050 nm have been demonstrated in Fe:ZnSe lasers.4,8,9

One of the limitations of the Fe:ZnSe laser transition is the

short upper-state lifetime at RT due to multiphonon quench-

ing.7 The practical implication of this quenching is that

Fe:ZnSe must be cryogenically cooled to achieve CW laser

operation. However, room temperature operation has been

demonstrated in gain switched operation with laser efficien-

cies of up to 34%.10

Many of the potential applications for mid-IR laser sys-

tems are in non-laboratory environments; hence, it is desira-

ble for the laser to be vibrationally insensitive and to require

minimal post-fabrication alignment. This criterion is not

often met by bulk laser systems, which include many free

space optics. A monolithic waveguide design geometry

allows the removal of the need for free-space optics in the

laser system. ZnSe fiber is currently in development with

propagation losses of <1 dB/cm at 1550 nm, but there is not

yet any demonstration of transition metal doped ZnSe fibers

lasing.11 Thus, a solution is needed to leverage the advan-

tages of waveguide geometry in the available bulk Fe:ZnSe

polycrystalline laser samples. Macdonald et al.12 were the

first to demonstrate that ultra-fast laser inscription (ULI)

could be used for fabrication of waveguides and waveguide

lasers in Cr:ZnSe. ULI operates on the nonlinear absorption

of a femtosecond pulse focused below the surface of a trans-

parent dielectric. The high irradiances at the focus allow

nonlinear processes such as multi-photon, tunnelling, and av-

alanche ionization to transfer energy to the material lattice.13

This energy transfer can result in a change of the refractive

index at the focus of the laser beam. This index-modification

can then be exploited to fabricate a waveguide. Later work

by Macdonald et al. utilized the depressed cladding struc-

tures, first demonstrated by Okhrimchuk et al. in Nd:YAG,14

to demonstrate a Cr:ZnSe waveguide laser with a slope effi-

ciency of 45%.15 This method makes use of a localized

reduction in refractive index, and thus, the femtosecond laser

is used to inscribe the cladding region of the waveguide. The

advantage of this depressed cladding designs over that of

positive index schemes, such as single line and multiscan

modification,16 is the ability to arbitrarily change the diame-

ter of the waveguide without developing any micro-cracking

along the propagation of the waveguide. Micro-cracking has

been observed with double clad multiscan waveguides in

Cr:ZnSe.12 The depressed cladding Cr:ZnSe waveguide laser

has been demonstrated with a continuously tunable laser

operation from 2077 to 2777 nm (Ref. 17) and power levels

of 1.7 W.18 To the best of the authors’ knowledge, there have

not been any previous reports of waveguide fabrication in

Fe:ZnSe by any method.

In this letter, we demonstrate a waveguide laser opera-

tion in Fe:ZnSe with a maximum power output of 76 mW.

The advantages of longer interaction length between the
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pump and signal and tighter confinement resulted in a 44%

reduction in laser threshold power. The laser emitted at a

wavelength of 4122 nm with a FWHM linewidth of 6 nm.

This is the longest output wavelength of any waveguide laser

fabricated by ULI. The spectral width of a comparable bulk

lasers system is found to be between 60 and 80 nm.19 The

cause of this line narrowing in the depressed cladding wave-

guide is not yet fully understood, but it shows an unexpected

advantage of this geometry.

A diffusion-doped polycrystalline Fe:ZnSe sample with

dimensions 1.82 mm � 4.76 mm � 6.94 mm and a Fe2þ ion

concentration of 8.88 � 1018 cm�3 was used to as a gain me-

dium for the waveguide laser. The Fe:ZnSe sample used in

this work was purchased from IPG Photonics. The wave-

guide structures created for this investigation were annular

depressed cladding waveguides similar to that previously

demonstrated in Cr:ZnSe, Cr:ZnS, and Tm:ZBLAN.15,20,21

The inscription laser used for this work was a Satsuma fem-

tosecond laser by Amplitude Systems. Key material modifi-

cation parameters such as pulse energy, pulse width, and the

number of translations per element were investigated over a

range of 1–2.1 lJ, 750–1000 fs, 100–200, and 1–9, respec-

tively. For permanent negative refractive index change, pulse

energies of 1.8 lJ were used with a temporal pulse width of

750 fs at a repetition rate of 100 kHz. The inscription beam

was focused below the surface of the sample using a slightly

over-filled 0.6 NA aspheric lens. The waveguides were

inscribed along the longest dimension of the sample

(6.94 mm). A range of waveguide horizontal diameters were

investigated from 100 lm to 200 lm. The waveguides were

inscribed with a sample translation speed of 9 mm/s in the y

axis as shown in Figure 1. A microscope image of the end

facet of a waveguide is shown in Figure 1(a). The NA of the

Fe:ZnSe waveguides were measured directly from the output

cone of light; direct measurement of the output mode pro-

duced an NA of 0.2. Clearly, the waveguide is smaller in the

z-direction than the x-direction. Such asymmetric designs

may be very useful to tailor the waveguide cross-section to

match the asymmetry of diode pump sources.

For laser operation, the sample was placed inside an

evacuated dewar as shown in Figure 2, with anti-reflective

(AR) coated CaF2 windows. The sample was cooled to 77 K

using liquid nitrogen. The sample chamber was put under

vacuum to prevent condensation. A Sheaumann MIR-PAC

diode-pumped Er:YAG laser was used as the optical pump

source for the laser, which was capable of 1.1 W CW at an

emission wavelength of 2.94 lm. The pump laser beam was

collimated using a 100 mm AR coated CaF2 lens. A flat

dichroic mirror was used as the rear laser mirror, which was

AR coated for the pump and highly reflective (R> 99.9%) at

the lasing wavelength. A 35 mm focal length intra-cavity AR

coated CaF2 lens was used to focus the pump light onto the

end facet of the waveguide. The output of the laser was colli-

mated using an intra-cavity AR coated CaF2 lens with focal

length of 45 mm. An output coupling mirror was placed after

the collimating lens.

Laser operation was obtained in many of the inscribed

waveguides, the optimum of which had a core size of 151 lm

and 40 lm in the x- and z-axes, respectively, as shown in

Figure 1(a) with 200 inscription line elements and only one

inscription translation per element. A range of output cou-

pling was investigated using 80% and 90% reflective output

couplers. The laser was also found to operate with feedback

from the Fresnel reflection of the end facet (R¼ 17.5%). For

comparison, the sample was translated to a non-modified

region in order to get the laser to operate in the bulk. For

bulk laser operation, the intra-cavity input and output lens

were translated towards the sample to have their focuses at

the center of the sample. The performance of the waveguide

and bulk laser is shown in Figure 3(a). Note that the values

recorded for pump power have been reduced by the 17.5%

Fresnel reflection at the input facet.

The optimum waveguide demonstrated an output power

of 76 mW with a slope efficiency of 11.0% using an output

coupler with R¼ 80%. The threshold of laser action was

found to be 210 mW. The lowest threshold of the waveguide

laser was measured to be 153 mW with an output coupler

with R¼ 90%. There was no observed rollover at the highest

pump power of 908 mW and thus, we can infer that that laser

performance was pump limited and further power scaling is

possible. In addition, for optimal laser performance, the

Fe:ZnSe sample should be AR coated.

FIG. 1. (a) Optical micrograph of

end facet of 200 lm wide waveguide.

(b) Waveguide laser mode image at

4122 nm imaged at end facet when las-

ing from Fresnel reflection at output

facet. (c) Bulk laser output mode at cen-

tered at 4135 nm lasing from Fresnel

reflection at output facet.

FIG. 2. Laser cavity configuration of

Fe:ZnSe waveguide laser.
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The laser output mode of the waveguide and bulk laser

was imaged using a mid-IR camera (FLIR 7200) shown in

Figure 1. The waveguide laser mode is near Gaussian with a

FWHM of 63 lm and 53 lm in the x- and z-axes, respec-

tively, in the plane of the output facet. The bulk laser mode

is larger with a FWHM of 77 lm and 90 lm in the x- and

z-axes, respectively, in the plane of the output facet. From

Figure 1, we can conclude that transverse mode quality of

the waveguide is superior to that of the bulk mode. The

lower threshold of the waveguide laser is attributed to the

smaller average mode size in the gain media and hence

higher irradiance.

The spectra of the lasers were investigated using a

monochromator (Gilden Photonics) with a spectral resolution

of 0.4 nm. The spectra of the bulk and waveguide laser lasing

with 906 mW of pump power are shown in Figure 3(b). The

bulk emission consisted of multiple peaks spanning 50 nm,

the largest centered at 4135 nm. This result is in good agree-

ment with the work previously carried out in a bulk Fe:ZnSe

laser by Evans et al.19 The waveguide laser was found to

emit at a central wavelength of 4122 nm with a FWHM of

6 nm. It has been found experimentally that the spectral line-

width of the Cr and Fe doped depressed cladding waveguide

lasers are considerably narrower than their typically bulk

counterparts.15,22 Future work includes investigation of this

interesting and very useful phenomenon, which is beyond

the scope of this letter. Regardless, this is an additional bene-

fit of the ULI waveguides, which will be useful for future

sensing applications.

Direct comparison of the transmitted pump light under

guiding and non-guiding conditions allowed an estimate of

the waveguide losses due to increased scattering by the

inscribed structures. With the pump laser operating at

450 mW and the Fe:ZnSe crystal cooled to 77 K, the pump

light was launched into the inscribed waveguide. The power

exiting the sample compartment was measured to be

0.865 mW. The sample compartment was translated, so that

the beam propagated along a section of bulk Fe:ZnSe. In this

configuration, the power exiting the sample compartment was

measured to be 1.00 mW. The loss due to all effects, most

notably, Fresnel effects and absorption of the pump radiation

by the Fe2þ ions are the same in both configurations, so the

difference in transmitted power is attributable to waveguide

effects exclusively. Thus, the waveguide losses were calcu-

lated to be 0.91 dB/cm.

Additionally, the method of Findlay and Clay was used

to find a value of the waveguide loss at the signal wave-

length.23 The modified Findlay–Clay equation was fitted to

the threshold and output coupler reflectivity data for the

waveguide laser. Accounting for Fresnel reflectivity losses

of 17.5% and 1.3% transmission losses of the CaF2 windows,

the propagation loss is calculated to be 0:16 dB=cm.

The scattering loss of the waveguide was also measured

using the technique demonstrated by Okamura et al.24 The

output of a free-running Fe:ZnSe laser operating at approxi-

mately 4050 nm was launched into the waveguide, and the

scattering from the side of the guide was imaged using a

FLIR mid-IR camera. Image analysis of the scattered light

enables a non-destructive technique for estimating losses

from a waveguide structure. This image analysis technique

eliminates the need to carefully factor out entrance and exit

coupling losses required for input/output measurements. We

also note from Ref. 7 that the absorption coefficient of

Fe:ZnSe at 4050 nm at 77 K is negligible, so all the light

image by the camera is from scattering processes. Using this

method, the propagation loss in the waveguide at the signal

wavelength is measured to be 0.46 dB/cm. The fidelity of

this technique deteriorates when the signal to noise ratio is

small, which is the case when the scattering losses are low.

Consequently, the propagation losses calculated here should

be interpreted as an upper-bound of the waveguide losses.

In summary, the value of the total waveguide loss was

calculated using three methods. Direct measurement of the

total loss at the pump wavelength gave a value of

0:9 dB=cm: Extrapolation of the value in situ with the laser

running using the Findlay–Clay method gave a value of

0:16 dB=cm: The method of imaging scattered light at

approximately the laser wavelength with an IR camera gave

a value of 0:46 dB=cm. So, we see that each method indi-

cates the total losses are <1 dB=cm, which is negligible

compared with the small signal gain coefficient for our laser

material, which is typically >20 dB/cm. Propagation losses

of <1 dB/cm demonstrated in this paper are comparable to

previous demonstrations of ULI passive waveguide devices

at 4 lm.25,26

In this letter, we have demonstrated a Fe:ZnSe wave-

guide laser. The waveguide structure was an annular

depressed cladding structure fabricated by ULI. The

inscribed waveguides were found to have a low propagation

loss of <1 dB/cm at the lasing wavelength of 4122 nm. The

laser emitted at a maximum output power of 76 mW, which

was limited by the available pump power of 906 mW. The

tighter confinement of the pump and laser signal beams by

the waveguide resulted in a low laser threshold of 154 mW,

which is a 44% reduction compared to an otherwise identical

bulk system with a laser threshold of 274 mW. A narrow

FIG. 3. Fe:ZnSe waveguide and bulk

laser characterization. (a) Laser per-

formance of waveguide and bulk

Fe:ZnSe laser with different amounts

of output coupling. (b) Spectrograph of

Fe:ZnSe waveguide and bulk laser

under 908 mW of pump power with a

80%R output coupler.
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spectral linewidth of 6 nm was demonstrated by the wave-

guide laser. To the best of the authors’ knowledge, this is the

narrowest linewidth demonstrated in any free-running

Fe:ZnSe laser. Demonstration of an Fe:ZnSe laser in a

guided-wave configuration will enable the creation of com-

pact, all solid-state laser systems for commercial and labora-

tory use.
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